Округление после 5

Округление после 5

Округление после 5

Округление после 5

В прошлом округление промежуточных значений и результата имело прикладное значение (так как при расчётах на бумаге или с помощью примитивных устройств типа абака учёт лишних десятичных знаков может серьёзно увеличить объём работы).

Сейчас оно остаётся элементом научной и инженерной культуры.

В бухгалтерских приложениях, кроме того, использование округлений, в том числе промежуточных, может требоваться для защиты от вычислительных ошибок, связанных с конечной разрядностью вычислительных устройств.

Более того, некоторые исследования используют округления возраста для измерения числовой грамотности. Это связано с фактом, что менее образованные люди склонны округлять свой возраст вместо того, что бы указывать точный.

В случае с 19,912 цифра, которая идет после сотых, не округляется, поэтому она просто отбрасывается.

  • Если речь идет о числе 18,4893 , то округление до сотых происходит следующим образом: первая цифра, которую нужно отбросить, это 3, поэтому никаких изменений не происходит. Получается 18,48 .
  • В случае с числом 0,2254 мы имеем первую цифру, которая отбрасывается при округлении до сотых. Это пятерка, которая указывает на то, что предыдущее число нужно увеличить на единицу. ВниманиеТо есть, мы получаем 0,23 .
  • Бывают и случаи, когда округления изменяет все цифры в числе. К примеру, чтобы округлить до сотых число 64,9972 , мы видим, что число 7 округляет предыдущие. Получаем 65,00 .

Как округлять числа до целых

При округлении чисел до целых ситуация такая же.

Если мы имеем, к примеру, 25,5 , то после округления мы получаем 26 .

Правила округления после 5

Максимальная дополнительная абсолютная погрешность, вносимая при таком округлении (погрешность округления), составляет ±0,5 последнего сохраняемого разряда.

  • Округление к меньшему по модулю (округление к нулю, целое англ. fix, truncate, integer) — самое «простое» округление, поскольку после обнуления «лишних» знаков предшествующий знак сохраняют, то есть технически оно состоит в отбрасывании лишних знаков. Например, 11,9 → 11; −0,9 → 0; −1,1 → −1). При таком округлении может вноситься погрешность в пределах единицы последнего сохраняемого разряда, причём в положительной части числовой оси погрешность всегда отрицательна, а в отрицательной — положительна.
  • Округление к большему (округление к +∞, округление вверх, англ. ceiling — досл.

Округление чисел после 5

То есть мы приблизили число 503 к более легко воспринимающемуся числу 500. Например, булка хлеба весит 498 грамм, то можно сказать округлив результат, что булка хлеба весит 500 грамм.

Округление – это приближение числа к более “легкому” числу для восприятия человека.

В итоге округления получается приближенное число. Округление обозначается символом ≈, такой символ читается “приближённо равно”.

Можно записать 503≈500 или 498≈500.

Читается такая запись, как “пятьсот три приближенно равно пятистам” или “четыреста девяносто восемь приближенно равно пятистам”.

Разберем еще пример:

4471≈4000 4571≈5000

4371≈4000 4671≈5000

4271≈4000 4771≈5000

4171≈4000 4871≈5000

4071≈4000 4971≈5000

В данном примере было произведено округление чисел до разряда тысяч.

Округление 5 после запятой

Эти символы (а также английские названия для этих операций — соответственно, ceiling и floor, досл. «потолок» и «пол») были введены[1] К.

Айверсоном в его работе A Programming Language[2], описавшей систему математических обозначений, позже развившуюся в язык программирования APL. Айверсоновские обозначения операций округления были популяризированы Д.


Кнутом в его книге «Искусство программирования»[3].

По аналогии, округление к ближайшему целому часто обозначают как . В некоторых прежних и современных (вплоть до конца XX века) работах так обозначалось округление к меньшему; такое использование этого обозначения восходит ещё к работе Гаусса 1808 года (третье его доказательство квадратичного закона взаимности).

14) 543, 0 0 8≈543,01;

15) 67, 3 8 2≈67,38.

Важно: в ответе последней должна стоять цифра в том разряде, до которого вы округляли.

www.mathematics-repetition.com

Как округлить число до целого

Применяя правило округления чисел, рассмотрим на конкретных примерах, как округлить число до целого.

Правило округления числа до целого

Чтобы округлить число до целого (или округлить число до единиц), надо отбросить запятую и все числа, стоящие после запятой.

Если первая из отброшенных цифр 0, 1, 2, 3 или 4, то число не изменится.

Если первая из отброшенных цифр 5, 6, 7, 8 или 9, предыдущую цифру нужно увеличить на единицу.

Округлить число до целого:

Чтобы округлить число до целого, отбрасываем запятую и все стоящие после нее числа.

Округление после 5 до целого числа

Уважаемый гость! Да будет Вам известно, в математике для округление числа существуют различные способы округления.

Источник: http://advokat-martov.ru/okruglenie-posle-5

Правила округления чисел после запятой: как правильно округлять до единиц, сотых, тысячных и целых

Округление после 5

Округлять числа в жизни приходится чаще, чем кажется многим. Особенно это актуально для людей тех профессий, которые связаны с финансами. Этой процедуре люди, работающие в данной сфере, обучены хорошо.

Но и в повседневной жизни процесс приведения значений к целому виду не редкость. Многие люди благополучно забыли, как округлять числа, сразу же после школьной скамьи.

Напомним основные моменты этого действия.

Круглое число

Перед тем как перейти к правилам округления значений, стоит разобраться, что представляет собой круглое число. Если речь идет о целых, то оно обязательно заканчивается нулем.

На вопрос, где в повседневной жизни пригодиться такое умение, можно смело ответить – при элементарных походах по магазинам.

С помощью правила приблизительного подсчета можно прикинуть, сколько будут стоить покупки и какую сумму необходимо взять с собой.

Именно с круглыми числами легче выполнять подсчеты, не используя при этом калькулятор.

К примеру, если в супермаркете или на рынке покупают овощи весом 2 кг 750 г, то в простом разговоре с собеседником зачастую не называют точный вес, а говорят, что приобрели 3 кг овощей. При определении расстояния между населенными пунктами также применяют слово «около». Это и значит приведение результата к удобному виду.

Следует отметить, что при некоторых подсчетах в математике и решении задач также не всегда используются точные значения. Особенно это актуально в тех случаях, когда в ответе получают бесконечную периодическую дробь. Приведем несколько примеров, когда используются приближенные значения:

  • некоторые значения постоянных величин представляются в округленном виде (число «пи» и прочее);
  • табличные значения синуса, косинуса, тангенса, котангенса, которые округлены до определенного разряда.

Обратите внимание! Как показывает практика, приближение значений к целому, конечно, дает погрешность, но сосем незначительную. Чем выше разряд, тем точнее будет результат.

Получение приближенных значений

Это математическое действие осуществляется по определенным правилам.

Но для каждого множества чисел они разные. Отмечают, что округлить можно целые числа и десятичные дроби.

А вот с обыкновенными дробями действие не выполняется.

Сначала их необходимо перевести в десятичные дроби, а затем приступить к процедуре в необходимом контексте.

Правила приближения значений заключаются в следующем:

  • для целых – замена разрядов, следующих за округляемым, нулями;
  • для десятичных дробей – отбрасывания всех чисел, которые находятся за округляемым разрядом.

К примеру, округляя 303 434 до тысяч, необходимо заменить сотни, десятки и единицы нулями, то есть 303 000. В десятичных дробях 3,3333 округляя до десятых, просто отбрасывают все последующие цифры и получают результат 3,3.

! Что такое деление с остатком: примеры для ребенка в 3, 4 классе

Точные правила округления чисел

При округлении десятичных дробей недостаточно просто отбросить цифры после округляемого разряда. Убедиться в этом можно на таком примере.

Если в магазине куплено 2 кг 150 г конфет, то говорят, что приобретено около 2 кг сладостей. Если же вес составляет 2 кг 850 г, то производят округление в большую сторону, то есть около 3 кг.

То есть видно, что иногда округляемый разряд изменен. Когда и как это проделывают, смогут ответить точные правила:

  1. Если после округляемого разряда следует цифра 0, 1, 2, 3 или 4, то округляемый оставляют неизменным, а все последующие цифры отбрасываются.
  2. Если после округляемого разряда следует цифра 5, 6, 7, 8 или 9, то округляемый увеличивают на единицу, а все последующие цифры также отбрасываются.

К примеру, как правильно дробь 7,41 приблизить к единицам. Определяют цифру, которая следует за разрядом. В данном случае это 4. Следовательно, согласно правилу, число 7 оставляют неизменным, а цифры 4 и 1 отбрасывают. То есть получаем 7.

Если округляется дробь 7,62, то после единиц следует цифра 6. Согласно правилу, 7 необходимо увеличить на 1, а цифры 6 и 2 отбросить. То есть в результате получится 8.

Представленные примеры показывают, как округлить десятичные дроби до единиц.

Приближение до целых

Отмечено, что округлять до единиц можно точно так же, как и до целых. Принцип один и тот же. Остановимся подробнее на округлении десятичных дробей до определенного разряда в целой части дроби.

Представим пример приближения 756,247 до десятков. В разряде десятых располагается цифра 5. После округляемого разряда следует цифра 6.

Следовательно, по правилам необходимо выполнить следующие шаги:

  • округление в большую сторону десятков на единицу;
  • в разряде единиц цифру 6 заменяют нулем;
  • цифры в дробной части числа отбрасываются;
  • в результате получают 760.

Обратим внимание на некоторые значения, в которых процесс математического округления до целых по правилам не отображает объективную картину. Если взять дробь 8,499, то, преобразовывая его по правилу, получаем 8.

Но по сути это не совсем так. Если поразрядно округлить до целых, то вначале получим 8,5, а затем отбрасываем 5 после запятой, и осуществляем округление в большую сторону.

Получаем 9, что, в принципе, не сосем точно. То есть в таких значениях погрешность существенна. Поэтому оцениваем задачу и, если ситуация позволяет, то лучше использовать значение 8,5.

! Изучение точного предмета: натуральные числа — это какие числа, примеры и свойства

Приближение до десятых

Как округлить до десятых, до сотых, до тысячных? Операция осуществляется по таким же правилам, как и до целых. Основная задача – правильно определить округляемый разряд и знак, который следует за ним.

К примеру, дробь 6,7864 при доведении:

  • до десятых становится равной 6,8;
  • до сотых – 6,79;
  • если округлить до тысячных, то получают 6,786.

Обратите внимание! Незнание этих правил очень удачно используют маркетологи. В магазинах, наблюдая ценник с указанием числа 5,99, большинством покупателей воспринимается цена, равная 5. В действительности же цена товара практически 6.

Математика — учимся округлять числа

Правила округления чисел до десятых

Вывод

Приоритетов умения выполнять такие математические операции можно привести ещё достаточно много. Важно научиться правильно оценивать ситуацию, задаться целью, и результат придет незамедлительно.

! Изучаем математику в игровой форме: как ребенку быстро выучить таблицу умножения

Источник: https://uchim.guru/matematika/pravila-okrugleniya-chisel-posle-zapyatoj.html

Правило округления после 5

Округление после 5

Под округлением натурального числа понимают замену его таким ближайшим по значению числом, у которого одна или несколько последних цифр в его записи заменены нулями.

Правило округления:

Чтобы округлить натуральное число, нужно в записи числа выбрать разряд, до которого производится округление.

Цифра, записанная в выбранном разряде:

  • не меняется, если следующая за ней справа цифра — 0, 1, 2, 3 или 4;
  • увеличивается на единицу, если следующая за ней справа цифра — 5,6,7,8 или 9.

Все цифры, стоящие справа от данного разряда, заменяются нулями.

Пример: 143 ≈ 140 (округление до десятков);
5671 ≈ 5700 (округление до сотен).

Если в разряде, до которого производится округление, стоит цифра 9 и необходимо ее увеличить на единицу, то в этом разряде записывается цифра 0, а цифра в соседнем старшем разряде (слева) увеличивается на 1.

Пример: 796 ≈ 800 (округление до десятков);
970 ≈ 1000 (округление до сотен).

Округление десятичных дробей

Чтобы округлить десятичную дробь, нужно в записи числа выбрать разряд, до которого производится округление. Цифра, записанная в данном разряде:

  • не меняется, если следующая за ней справа цифра — 0, 1, 2, 3 или 4;
  • увеличивается на единицу, если следующая за ней справа цифра — 5,6,7,8 или 9.

Все цифры, стоящие справа от данного разряда, заменяются нулями. Если эти нули находятся в дробной части числа, то их не пишут.

Пример: 143,64 ≈ 143,6 (округление до десятых);
5,687 ≈ 5,69 (округление до сотых);
27,945 ≈ 28 (округление до целых).

Если в разряде, до которого производится округление, стоит цифра 9 и необходимо ее увеличить на единицу, то в этом разряде записывается цифра 0, а цифра в предыдущем разряде (слева) увеличивается на 1.

Пример:89,6 ≈ 90 (округление до десятков);
0,097 ≈ 0,10 (округление до сотых).

В приближенных вычислениях часто приходится округлять числа как приближенные, так и точные, т. е. отбрасывать одну или несколько последних цифр. Чтобы обеспечить наибольшую близость округленного числа к округляемому, соблюдаются следующие правила.

Правило 1.Если первая из отбрасываемых цифр больше, чем 5, то последняя из сохраняемых цифр усиливается, т. е. увеличиваемая на единицу. Усиление совершается и тогда, когда первая из отбрасываемых цифр равна 5, а за ней есть одна или несколько значащих цифр. (О случае, когда за отбрасываемой пятеркой нет цифр, см. ниже, правило 3.)

Пример 1. Округляя число 27,874 до трех значащих цифр, пишем 27,9. Третья цифра 8 усилена до 9, так как первая отбрасываемая цифра 7 больше чем 5. Число 27,9 ближе к данному, чем неусиленное округленное число 27,8.

Пример 2. Округляя число 36,251 до первого десятичного знака, пишем 36,3. Цифра десятых 2 усилена до 3, так как первая отбрасываемая цифра равна 5, а за ней есть значащая цифра 1. Число 36,3 ближе к данному (хотя и незначительно), чем неусиленное число 36,2.

Правило 2.Если первая из отбрасываемых цифр меньше чем 5, то усиления не делается.

Пример 3. Округляя число 27,48 до единиц, пишем 27. Это число ближе к данному, чем 28.

Правило 3.Если отбрасывается цифра 5, а за ней нет значащих цифр, то округление производится на ближайшее четное число, т. е. последняя сохраняемая цифра оставляется неизменной, если она четная, и усиливается, если она нечетная. Почему применяется это правило, сказано ниже (см. замечание).

Пример 4. Округляя число 0,0465 до третьего десятичного знака, пишем 0,046. Усиления не делаем, так как последняя сохраняемая цифра 6 — четная. Число 0,046 столь же близко к данному, как 0,047.

Пример 5. Округляя число 0,935 до второго десятичного знака, пишем 0,94. Последняя сохраняемая цифра 3 усиливается, так как она нечетная.

Пример 6. Округляя числа 6,527; 0,456; 2,195; 1,450; 0,950; 4,851; 0,850 до первого десятичного знака, получаем:

6,5; 0,5; 2,2; 1,4; 1,0; 4,9; 0,8.

Замечание.Применяя правило 3 к округлению одного числа, мы не увеличиваем точность округления (см. примеры 4 и 5). Но при многочисленных округлениях избыточные числа будут встречаться примерно столь же часто, как недостаточные. Взаимная компенсация погрешностей обеспечит наибольшую точность результата.

Правило округления чисел

В приближенных вычислениях зачастую приходится округлять некоторые числа, как приближенные, так и точные, то есть убирать одну или несколько конечных цифр. Для того чтобы обеспечить наибольшую близость отдельного округленного числа к округляемому числу, следует соблюдать некоторые правила.

Если первая из отделяемых цифр больше, чем число 5 , то последняя из оставляемых цифр усиливается, иначе говоря, увеличивается на единицу. Усиление так же предполагается и тогда, когда первая из убираемых цифр равна 5 , а за ней имеется одна или некоторое количество значащих цифр.

Число 25,863 округлённо записывается как – 25,9 . В данном случае цифра 8 будет усилена до 9 , так как первая отсекаемая цифра 6 , больше чем 5 .

Число 45,254 округлённо записывается как – 45,3 . Здесь цифра 2 будет усилена до 3 , так как первая отсекаемая цифра равна 5 , а за ней следует значащая цифра 1 .

В случае если первая из отсекаемых цифр меньше чем 5 , то усиления не производится.

Число 46,48 округлённо записывается как – 46 . Число 46 наиболее близко к округляемому числу, чем 47 .

Если отсекается цифра 5 , а за ней не имеется значащих цифр, то округление выполняется на ближайшее четное число, другими словами, последняя оставляемая цифра остаётся неизменной, если она четная, и усиливается в случае, если она нечетная.

Число 0,0465 округлённо записывается как – 0,046 . В данном случае усиления не делается, так как последняя оставляемая цифра 6 является чётной.

Число 0,935 округлённо записывается как – 0,94 . Последняя оставляемая цифра 3 усиливается, так как она является нечётной.

В практической деятельности человека бывают числа двух видов: точные и приближённые . Часто знание лишь о приближённом числе достаточно для понимания сути дела. Иногда употребляют приближённые числа, так как точное не требуется, а иногда точное число невозможно найти в принципе.

У треугольника 3 стороны. Число 3 – точное.

Сколько учеников в вашей школе? Вряд ли кто-нибудь, кроме директора, ответит точно на этот вопрос. Ученик же посчитает так: 20 классов примерно по 25 человек, получится примерно 500. Если спрашивающего устраивает такая точность, можно считать, что мы получили хорошее приближение.

В приближённых вычислениях часто приходится округлять как точные, так и приближённые числа. Под округлением понимают отбрасывание одной или нескольких последних цифр в десятичном представлении числа. При округлении соблюдают следующие правила.

Если первая из отбрасываемых цифр больше 5, то последняя из сохраняющихся цифр увеличивается на 1. Если первая из отбрасываемых цифр равна 5, а за ней следуют одна или несколько значащих цифр, то последняя из сохраняющихся цифр также увеличивается на 1.

Округлить число 74,28 до десятых.

При округлении числа 74,28 до десятых следует написать 74,3. Действительно, за цифрой 2, обозначающей разряд десятых следует цифра 8, которая больше 5. Следовательно, цифру 2 нужно увеличить на 1. Получается, как и было сказано, 74,3.

Округлить число 74,253 до десятых.

При округлении числа 74,253 до десятых также следует написать 74,3. Действительно, за цифрой 2, обозначающей разряд десятых, следует цифра 5, причём за этой цифрой есть ещё одна значащая цифра. Следовательно, цифру 2 нужно увеличить на 1. Получается, как и было сказано 74,3.

Если первая из отбрасываемых цифр меньше 5, то последняя из сохраняемых цифр остаётся неизменной.

Округлить число 74,24 до десятых.

При округлении числа 74,24 до десятых следует написать 74,2. Действительно, за цифрой 2, обозначающей разряд десятых, следует цифра 4, которая меньше 5. Следовательно, цифру 2 нужно оставить без изменения. Получается, как и было сказано, 74,2.

Если отбрасывается цифра 5, а за ней нет и никогда не было значащих цифр, то последняя из сохраняемых цифр остаётся неизменной, если она чётная, и увеличивается на 1, если она нечётная.

Округлить до десятых число 74,25.

Так как отбрасывается цифра 5, а за ней нет значащих цифр, причём сохраняемая цифра 2 – чётная, то её нужно оставить без изменений. Окончательно: 74,2.

Округлить до десятых число 74,35.

Так как отбрасывается цифра 5, а за ней нет значащих цифр, причём сохраняемая цифра 3 – нечётная, то её нужно увеличить на единицу (до чётного числа). Окончательно: 74,4.

Замечание. Во многих практических задачах пользуются упрощёнными правилами округления, согласно которым цифра, если за ней стоят цифры 0, 1, 2, 3, 4, при округлении не изменяется и увеличивается на 1 в противоположном случае. Это правило немного отлично от строгого правила, приведённого в нашем курсе. Будьте внимательны при решении задач – следует пользоваться строгими правилами округления.

Округление чисел

Числа округляют, когда полная точность не нужна или невозможна.

Округлить число до определенной цифры (знака), значит заменить его близким по значению числом с нулями на конце.

Натуральные числа округляют до десятков, сотен, тысяч и т.д. Названия цифр в разрядах натурального числа можно вспомнить в теме натуральные числа.

В зависимости от того, до какого разряда надо округлить число, мы заменяем нулями цифру в разрядах единиц, десятков и т.д.

Если число округляется до десятков, то нулями заменяем цифру в разряде единицы.

Если число округляется до сотен, то цифра ноль должна стоять и в разряде единиц, и в разряде десятков.

Число, полученное при округлении, называют приближённым значением данного числа.

Записывают результат округления после специального знака « ≈ ». Этот знак читается как «приближённо равно».

При округлении натурального числа до какого-либо разряда надо воспользоваться правилами округления.

  1. Подчеркнуть цифру разряда, до которого надо округлить число.
  2. Отделить все цифры, стоящие справа этого разряда вертикальной чертой.
  3. Если справа от подчёркнутой цифры стоит цифра 0, 1, 2, 3 или 4 , то все цифры, которые отделены справа, заменяются нулями. Цифру разряда, до которой округляли, оставляем без изменений.
  4. Если справа от подчёркнутой цифры стоит цифра 5, 6, 7, 8 или 9 , то все цифры, которые отделены справа, заменяются нулями, а к цифре разряда, до которой округляли, прибавляется 1 .

Поясним на примере. Округлим 57 861 до тысяч. Выполним первые два пункта из правил округления.

После подчёркнутой цифры стоит цифра 8 , значит к цифре разряда тысяч (у нас это 7 ) прибавим 1 , а все цифры, отделённые вертикальной чертой заменим нулями.

Теперь округлим 756 485 до сотен.

Округлим 364 до десятков.

3 6 |4 ≈ 360 — в разряде единиц стоит 4 , поэтому мы оставляем 6 в разряде десятков без изменений.

На числовой оси число 364 заключено между двумя «круглыми» числами 360 и 370 . Эти два числа называют приближёнными значениями числа 364 с точностью до десятков.

Число 360 — приближённое значение с недостатком, а число 370 — приближённое значение с избытком.

В нашем случае, округлив 364 до десятков, мы получили, 360 — приближённое значение с недостатком.

Округлённые результаты часто записывают без нулей, добавляя сокращения «тыс.» (тысяча), «млн.» (миллион) и «млрд.» (миллиард).

  • 8 659 000 = 8 659 тыс.
  • 3 000 000 = 3 млн.

Округление также применяется для прикидочной проверки ответа в вычислениях.

Пусть нам нужно посчитать:

До точного вычисления сделаем прикидку ответа, округлив множители до наивысшего разряда.

794 · 52 ≈ 800 · 50 ≈ 40 000

Делаем вывод, что ответ будет близок к 40 000 .

794 · 52 = 41 228

Аналогично можно выполнять прикидку округлением и при делении чисел.

Источник: https://bouncekitchen.ru/1902-pravilo-okruglenija-posle-5/

Как округлять числа правильно и где в жизни это умение может стать полезным

Округление после 5

Многие люди интересуются, как округлять числа. Эта необходимость часто возникает у людей, которые свою жизнь связывают с бухгалтерией или другими видами деятельности, где требуются расчеты. Округление может производиться до целых, десятых и так далее. И необходимо знать, как это делать правильно, чтобы расчеты были более менее точными.

А что такое вообще круглое число? Это то, которое заканчивается на 0 (по большей части). В обыденной жизни умение округлять числа значительно облегчает походы по магазинам.

Стоя у кассы, можно приблизительно прикинуть общую стоимость покупок, сравнить, сколько стоит килограмм одноименного товара в различных по весу пакетах.

С числами, приведенными к удобной форме, легче производить устные расчеты, не прибегая к помощи калькулятора.

Зачем округляются числа?

Любые цифры человек склонен округлять в тех случаях, когда нужно выполнять более упрощенные операции. Например, дыня весит 3,150 килограммов.

Когда человек будет рассказывать своим знакомым о том, сколько граммов имеет южный плод, он может прослыть не очень интересным собеседником.

Значительно лаконичнее звучат фразы типа “Вот я купил трехкилограмовую дыню” без вникания во всякие ненужные детали.

Интересно, что даже в науке нет необходимости всегда иметь дело с максимально точными числами. А если речь идет о периодических бесконечных дробях, которые имеют вид 3,33333333…3, то это становится невозможным. Поэтому самым логичным вариантом будет обычное округление их. Как правило, результат после этого искажается незначительно. Итак, как округлять числа?

Несколько важных правил при округлении чисел

Итак, если вы захотели округлить число, важно понимать основные принципы округления? Это операция изменения десятичной дроби, направленная на уменьшение количества знаков после запятой. Чтобы осуществлять данное действие, необходимо знать несколько важных правил:

  1. Если число нужного разряда находится в пределах 5-9, округление осуществляется в большую сторону.
  2. Если число нужного разряда находится в пределах 1-4, округление производится в меньшую сторону.

Например, у нас есть число 59. Нам его нужно округлить. Чтобы это сделать, надо взять число 9 и добавить к нему единицу, чтобы получилось 60. Вот и ответ на вопрос, как округлять числа. А теперь рассмотрим частные случаи. Собственно, мы разобрались, как округлить число до десятков с помощью этого примера. Теперь осталось всего лишь использовать эти знания на практике.

Очень часто случается так, что имеется необходимость округлить, например, число 5,9. Данная процедура не составляет большого труда. Нужно для начала опустить запятую, и перед нашим взором предстает при округлении уже знакомое нам число 60. А теперь ставим запятую на место, и получаем 6,0. А поскольку нули в десятичных дробях, как правило, опускаются, то получаем в итоге цифру 6.

Аналогичную операцию можно производить и с более сложными числами. Например, как округлять числа типа 5,49 до целых? Здесь все зависит от того, какие цели вы поставите перед собой.

Вообще, по правилам математики, 5,49 – это все-таки не 5,5. Поэтому округлить его в большую сторону нельзя. Но можно его округлить до 5,5, после чего уже законным становится округление до 6.

Но такая уловка не всегда срабатывает, так что нужно быть предельно осторожным.

Как правильно округлять числа после запятой до десятых?

В принципе, выше уже был рассмотрен пример правильного округления числа до десятых, поэтому сейчас важно отобразить только основной принип. По сути, все происходит приблизительно таким же образом.

Если цифра, которая находится на второй позиции после запятой, находится в пределах 5-9, то она вообще убирается, а стоящая перед ней цифра увеличивается на один.

Если же меньше 5, то данная цифра убирается, а предыдущая остается на своем месте.

Например, при округлении числа 4,59 до 4,6 цифра “9” уходит, а к пятерке прибавляется единица. А вот при округлении 4,41 единица опускается, а четверка остается в незименном виде.

Как используют маркетологи неумение массового потребителя округлять цифры?

Оказывается, большая часть людей на свете не имеет привычки оценить реальную стоимость продукта, что активно эксплуатируют маркетологи. Все знают слоганы акций типа “Покупайте всего за 9,99”.

Да, мы сознательно понимаем, что это уже по сути десять долларов. Тем не менее наш мозг устроен так, что воспринимает только первую цифру.

Так что нехитрая операция приведения числа в удобный вид должно войти в привычку.

Очень часто округление позволяет лучше оценить промежуточные успехи, выражающиеся в численной форме. Например, человек стал зарабатывать 550 долларов в месяц. Оптимист скажет, что это почти 600, пессимист – что это чуть больше 500. Вроде бы разница есть, но мозгу приятнее “видеть”, что объект достиг чего-то большего (или наоборот).

Можно привести огромное количество примеров, когда умение округлять оказывается невероятно полезным. Важно проявлять изобретательность и по возможности на загружаться ненужной информацией. Тогда успех будет незамедлительным.

Источник: https://FB.ru/article/221569/kak-okruglyat-chisla-pravilno-i-gde-v-jizni-eto-umenie-mojet-stat-poleznyim

Ошибки[править | править код]

Довольно часто встречаются злоупотребления некруглыми числами. Например:

  • Записывают числа, имеющие невысокую точность, в неокруглённом виде. В статистике: если 4 человека из 17 ответили «да», то пишут «23,5 %» (в то время как верно «24 %», так как число значащих цифр в исходных данных не более двух).
  • Пользователи стрелочных приборов иногда размышляют так: «стрелка остановилась между 5,5 и 6 ближе к 6, пусть будет 5,8» — такое рассуждение некорректно.

Методы[править | править код]

В разных сферах могут применяться различные методы округления. Во всех этих методах «лишние» знаки обнуляют (отбрасывают), а предшествующий им знак корректируется по какому-либо правилу.

  • Округление к ближайшему целому (англ. rounding) — наиболее часто используемое округление, при котором число округляется до целого, модуль разности с которым у этого числа минимален. В общем случае, когда число в десятичной системе округляют до N-го знака, правило может быть сформулировано следующим образом:
    • если N+1 знак < 5, то N-й знак сохраняют, а N+1 и все последующие обнуляют;
    • если N+1 знак ≥ 5, то N-й знак увеличивают на единицу, а N+1 и все последующие обнуляют;

    Например: 11,9 → 12; −0,9 → −1; −1,1 → −1; 2,5 → 3.

Округление после 5 в какую сторону

Использовать баги игры,карт. [Бан на 30 мин/1 день] 3. Использовать программы, меняющие голос/воспроизводящие посторонние звуки. [Бан на 30 мин/3 часа] 4. Использовать ники […]

  • Постановление правительства правила оказания гостиничных услуг Приложение. Правила предоставления гостиничных услуг в Российской Федерации Правила предоставления гостиничных услуг в Российской Федерации (утв. постановлением Правительства РФ от 25 апреля 1997 г. N 490) С изменениями и дополнениями от: 2 октября 1999 г., 15 сентября 2000 г., 1 февраля […]
  • Пошлина при уменьшении алиментов вопрос юристу по налогам Автор вопроса: Ольга Место жительства: Россия Здравствуйте. Возник вопрос при расчете цены иска и госпошлины в исковом заявлении об уменьшении алиментов.

Округление после 5 до сотых

Внимание

В случае с 19,912 цифра, которая идет после сотых, не округляется, поэтому она просто отбрасывается.

  • Если речь идет о числе 18,4893 , то округление до сотых происходит следующим образом: первая цифра, которую нужно отбросить, это 3, поэтому никаких изменений не происходит. Получается 18,48 .
  • В случае с числом 0,2254 мы имеем первую цифру, которая отбрасывается при округлении до сотых. Это пятерка, которая указывает на то, что предыдущее число нужно увеличить на единицу.

Источник: http://grandstail32.ru/okruglenie-posle-5

Как округлять числа в большую и меньшую сторону функциями Excel

Округление после 5

Округляют числа в Excel несколькими способами. С помощью формата ячеек и с помощью функций. Эти два способа следует различать так: первый только для отображения значений или вывода на печать, а второй способ еще и для вычислений и расчетов.

С помощью функций возможно точное округление, в большую или меньшую сторону, до заданного пользователем разряда. А полученные значения в результате вычислений, можно использовать в других формулах и функциях.

В то же время округление с помощью формата ячеек не даст желаемого результата, и результаты вычислений с такими значениями будут ошибочны. Ведь формат ячеек, по сути, значение не меняет, меняется лишь его способ отображения.

Чтобы в этом быстро и легко разобраться и не совершать ошибок, приведем несколько примеров.

Впишем в ячейку А1 значение 76,575. Щелкнув правой кнопкой мыши, вызываем меню «Формат ячеек». Сделать то же самое можно через инструмент «Число» на главной странице Книги. Или нажать комбинацию горячих клавиш CTRL+1.

Выбираем числовой формат и устанавливаем количество десятичных знаков – 0.

Результат округления:

Назначить количество десятичных знаков можно в «денежном» формате, «финансовом», «процентном».

Как видно, округление происходит по математическим законам. Последняя цифра, которую нужно сохранить, увеличивается на единицу, если за ней следует цифра больше или равная «5».

Особенность данного варианта: чем больше цифр после запятой мы оставим, тем точнее получим результат.

С помощью функции ОКРУГЛ() (округляет до необходимого пользователю количества десятичных разрядов). Для вызова «Мастера функций» воспользуемся кнопкой fx. Нужная функция находится в категории «Математические».

Аргументы:

  1. «Число» – ссылка на ячейку с нужным значением (А1).
  2. «Число разрядов» – количество знаков после запятой, до которого будет округляться число (0 – чтобы округлить до целого числа, 1 – будет оставлен один знак после запятой, 2 – два и т.д.).

Теперь округлим целое число (не десятичную дробь). Воспользуемся функцией ОКРУГЛ:

  • первый аргумент функции – ссылка на ячейку;
  • второй аргумент – со знаком «-» (до десятков – «-1», до сотен – «-2», чтобы округлить число до тысяч – «-3» и т.д.).

Как округлить число в Excel до тысяч?

Пример округления числа до тысяч:

Формула: =ОКРУГЛ(A3;-3).

Округлить можно не только число, но и значение выражения.

Допустим, есть данные по цене и количеству товара. Необходимо найти стоимость с точностью до рубля (округлить до целого числа).

Первый аргумент функции – числовое выражение для нахождения стоимости.

Как округлить в большую и меньшую сторону в Excel

Для округления в большую сторону – функция «ОКРУГЛВВЕРХ».

Первый аргумент заполняем по уже знакомому принципу – ссылка на ячейку с данными.

Второй аргумент: «0» – округление десятичной дроби до целой части, «1» – функция округляет, оставляя один знак после запятой, и т.д.

Формула: =ОКРУГЛВВЕРХ(A1;0).

Результат:

Чтобы округлить в меньшую сторону в Excel, применяется функция «ОКРУГЛВНИЗ».

Пример формулы: =ОКРУГЛВНИЗ(A1;1).

Полученный результат:

Формулы «ОКРУГЛВВЕРХ» и «ОКРУГЛВНИЗ» используются для округления значений выражений (произведения, суммы, разности и т.п.).

Как округлить до целого числа в Excel?

Чтобы округлить до целого в большую сторону используем функцию «ОКРУГЛВВЕРХ». Чтобы округлить до целого в меньшую сторону используем функцию «ОКРУГЛВНИЗ». Функция «ОКРУГЛ» и формата ячеек так же позволяют округлить до целого числа, установив количество разрядов – «0» (см.выше).

В программе Excel для округления до целого числа применяется также функция «ОТБР». Она просто отбрасывает знаки после запятой. По сути, округления не происходит. Формула отсекает цифры до назначенного разряда.

Сравните:

Второй аргумент «0» – функция отсекает до целого числа; «1» – до десятой доли; «2» – до сотой доли и т.д.

Специальная функция Excel, которая вернет только целое число, – «ЦЕЛОЕ». Имеет единственный аргумент – «Число». Можно указать числовое значение либо ссылку на ячейку.

Недостаток использования функции «ЦЕЛОЕ» – округляет только в меньшую сторону.

Округлить до целого в Excel можно с помощью функций «ОКРВВЕРХ» и «ОКРВНИЗ». Округление происходит в большую или меньшую сторону до ближайшего целого числа.

Пример использования функций:

Второй аргумент – указание на разряд, до которого должно произойти округление (10 – до десятков, 100 – до сотен и т.д.).

Округление до ближайшего целого четного выполняет функция «ЧЕТН», до ближайшего нечетного – «НЕЧЕТ».

Пример их использования:

Почему Excel округляет большие числа?

Если в ячейки табличного процессора вводятся большие числа (например, 78568435923100756), Excel по умолчанию автоматически округляет их вот так: 7,85684E+16 – это особенность формата ячеек «Общий».

Чтобы избежать такого отображения больших чисел нужно изменить формат ячейки с данным большим числом на «Числовой» (самый быстрый способ нажать комбинацию горячих клавиш CTRL+SHIFT+1). Тогда значение ячейки будет отображаться так: 78 568 435 923 100 756,00.

При желании количество разрядов можно уменьшить: «»-«Число»-«Уменьшить разрядность».

Источник: https://exceltable.com/funkcii-excel/kak-okruglyat-chisla

СтражЗакона
Добавить комментарий