Последовательность действий

12. Последовательность действий в очаге землетрясений

Последовательность действий

Действия людей:

а) при предупредительном сигнале:

” Внимание всем!” (сирены, прерывистые гудки)

Услышав сигнал “Внимание всем!”, людям необходимо выполнить следующие действия:

Немедленно включить радио или телевизор для прослушивания экстренных сообщений штаба гражданской обороны.

Сообщить соседям и родственникам о случившемся, привести домой детей и действовать в соответствии полученной вами информации.

При необходимости эвакуации выполнить следующие рекомендации:

соберите в небольшой чемодан (или рюкзак) вещи первой необходимости, документы, деньги, ценности;

налейте в емкость с плотно закрывающейся крышкой воду, приготовьте консервированные и сухие продукты питания;

подготовьте квартиру к консервации ( закройте окна, балконы; перекройте подачу газа, воды, электроэнергии, погасите огонь в печах; приготовьте второй экземпляр ключей для сдачи в РЭП; возьмите необходимую одежду и средства индивидуальной защиты);

окажите помощь престарелым и больным, проживающим по соседству.

б) при угрозе землетрясения

В этом случае необходимо действовать следующим образом:

Отключить газ, воду, электроэнергию, погасить огонь в печах, закрыть окна, балконы.

Оповестить соседей об опасности, взять с собой необходимые вещи, документы, деньги, воду, продукты и, закрыв квартиру на ключ, выйдете на улицу; детей держите за руку или на руках. Обратите внимание на поведение животных: перед землетрясением собаки воют, кошки выносят потомство наружу, и даже мыши бегут из домов.

Выбрать место вдали от зданий и линий электропередачи и находитесь там, слушая информацию по переносному радиоприемнику. Если вы находитесь в машине, остановитесь, не загораживая дороги, избегая мостов, тоннелей и многоэтажных зданий. Не возвращайтесь домой до объявления об отсутствии угрозы землетрясения.

Запишите телефон сейсмической станции. Реагируйте немедленно на внешние признаки землетрясения: колебание почвы или здания, дребезжание стекол, раскачивание люстр, тонкие трещины в штукатурке. Вы должны помнить, что наибольшая опасность происходит от падающих предметов, частей потолка, стен, балконов и т. п.

в) при внезапном землетрясении

Ну а в этом случае, когда опасность слишком близка и землетрясение угрожает вашей жизни, необходимо:

При первом толчке постараться немедленно покинуть здание в течение 15-20 секунд по лестнице или через окна первого этажа (лифтом пользоваться опасно). Спускаясь вниз, на ходу стучите в двери соседних квартир, громко оповещая соседей о необходимости покинуть здание.

Если вы остались в квартире, встаньте в дверной проем или в углу комнаты (у капитальной стены), подальше от окон, светильников, шкафов, навесных полок и зеркал. Берегитесь обрушивания на вас кусков штукатурки, стекол, кирпичей и т. п.

, спрячьтесь под стол или кровать, отвернитесь тот окна и прикройте голову руками, избегайте выходить на балкон.

Как только стихнут толчки, немедленно покиньте здание по лестнице, прижимаясь спиной к стене. Попытайтесь выключить газ, воду, электроэнергию, захватите с собой дежурную аптечку, необходимые вещи, закройте дверь на ключ. Не допускайте своими действиями возникновения паники.

При наличии в соседних квартирах детей и престарелых взломайте двери и помогите им выбраться на улицу, окажите первую помощь раненым, вызовите по телефону-автомату “скорую помощь” или отправьте посыльного в ближайшую больницу за врачом.

Если землетрясение застало вас за рулем, немедленно остановитесь (желательно на открытом месте) и выходите из машины до окончания толчков. В общественном транспорте оставайтесь на своих местах, попросив водителя открыть двери; после толчков спокойно без давки покиньте салон.

Вместе с соседями примите посильное участие в раборке завалов и извлечении пострадавших из-под обломков зданий, используя для извлечения личный автотранспорт, ломы, лопаты, автомобильные домкраты и другие подручные средства.

При невозможности самим извлечь людей из-под обломков немедленно сообщите об этом в штаб по ликвидации последствий землетрясения (ближайшую пожарную часть, отделение милиции, воинскую часть и т.п.) для оказания помощи.

Разбирайте завалы до тех пор, пока не убедитесь, что под ними нет людей. Для обнаружения пострадавших используйте все возможные способы, определяйте местонахождения людей по голосу и стуку.

После спасения людей и оказания первой медицинской помощи немедленно отправляйте их на попутных машинах в больницу.

Соблюдайте сами спокойствие и порядок, требуйте этого от других.

Вместе с соседями пресекайте распространение панических слухов, все случаи грабежа, мародерства, других нарушений законности, слушайте сообщения по местному радио.

При разрушении вашего дома следуйте на сборный пункт для получения медицинской о материальной помощи по средине улиц и, обходя здания, столбы и линии электропередачи.

13. Поведение при попадании в завал:

не старайтесь самостоятельно выбраться;

постарайтесь укрепить “потолок” находящимися рядом обломками мебели и здания;

отодвиньте от себя острые предметы;

если у вас есть мобильный телефон – позвоните спасателям по телефону “112” (если у вас телефон МТС), 030 (если у вас телефон МЕГАФОН), если у вас телефон марки “Моторола” следует набирать 004;

закройте нос и рот носовым платком и одеждой, по возможности влажными;

стучать с целью привлечения внимания спасателей лучше по трубам;

кричите только тогда, когда услышали голоса спасателей – иначе есть риск задохнуться от пыли;

ни в коем случае не разжигайте огонь.

Источник: https://studfile.net/preview/2238472/page:3/

Порядок выполнения действий, правила, примеры

Последовательность действий
Выражения, преобразование выражений

Числовые,буквенные выражения и выражения с переменными в своей записи могут содержать знаки различных арифметических действий. При преобразовании выражений и вычислении значений выражений действия выполняются в определенной очередности, иными словами, нужно соблюдать порядок выполнения действий.

В этой статье мы разберемся, какие действия следует выполнять сначала, а какие следом за ними.

Начнем с самых простых случаев, когда выражение содержит лишь числа или переменные, соединенные знаками плюс, минус, умножить и разделить.

Дальше разъясним, какого порядка выполнения действий следует придерживаться в выражениях со скобками. Наконец, рассмотрим, в какой последовательности выполняются действия в выражениях, содержащих степени, корни и другие функции.

Сначала умножение и деление, затем сложение и вычитание

В школе дается следующее правило, определяющее порядок выполнения действий в выражениях без скобок:

  • действия выполняются по порядку слева направо,
  • причем сначала выполняется умножение и деление, а затем – сложение и вычитание.

Озвученное правило воспринимается достаточно естественно. Выполнение действий по порядку слева направо объясняется тем, что у нас принято вести записи слева направо. А то, что умножение и деление выполняется перед сложением и вычитанием объясняется смыслом, который в себе несут эти действия.

Рассмотрим несколько примеров применения этого правила. Для примеров будем брать простейшие числовые выражения, чтобы не отвлекаться на вычисления, а сосредоточиться именно на порядке выполнения действий.

Выполните действия 7−3+6.

Исходное выражение не содержит скобок, а также оно не содержит умножения и деления. Поэтому нам следует выполнить все действия по порядку слева направо, то есть, сначала мы от 7 отнимаем 3, получаем 4, после чего к полученной разности 4 прибавляем 6, получаем 10.

Кратко решение можно записать так: 7−3+6=4+6=10.

Укажите порядок выполнения действий в выражении 6:2·8:3.

Чтобы ответить на вопрос задачи, обратимся к правилу, указывающему порядок выполнения действий в выражениях без скобок. В исходном выражении содержатся лишь действия умножения и деления, а согласно правилу, их нужно выполнять по порядку слева направо.

сначала 6 делим на 2, это частное умножаем на 8, наконец, полученный результат делим на 3.

Вычислите значение выражения 17−5·6:3−2+4:2.

Сначала определим, в каком порядке следует выполнять действия в исходном выражении. Оно содержит и умножение с делением, и сложение с вычитанием. Сначала слева направо нужно выполнить умножение и деление.

Так 5 умножаем на 6, получаем 30, это число делим на 3, получаем 10. Теперь 4 делим на 2, получаем 2.

Подставляем в исходное выражение вместо 5·6:3 найденное значение 10, а вместо 4:2 – значение 2, имеем 17−5·6:3−2+4:2=17−10−2+2.

В полученном выражении уже нет умножения и деления, поэтому остается по порядку слева направо выполнить оставшиеся действия: 17−10−2+2=7−2+2=5+2=7.

На первых порах, чтобы не перепутать порядок выполнения действий при вычислении значения выражения, удобно над знаками действий расставить цифры, соответствующие порядку их выполнения. Для предыдущего примера это выглядело бы так: .

Этого же порядка выполнения действий – сначала умножение и деление, затем сложение и вычитание – следует придерживаться и при работе с буквенными выражениями.

К началу страницы

В некоторых учебниках по математике встречается разделение арифметических действий на действия первой и второй ступени. Разберемся с этим.

Действиями первой ступени называют сложение и вычитание, а умножение и деление называют действиями второй ступени.

В этих терминах правило из предыдущего пункта, определяющее порядок выполнения действий, запишется так: если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем – действия первой ступени (сложение и вычитание).

К началу страницы

Выражения часто содержат скобки, указывающие порядок выполнения действий. В этом случае правило, задающее порядок выполнения действий в выражениях со скобками, формулируется так: сначала выполняются действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем – сложение и вычитание.

Итак, выражения в скобках рассматриваются как составные части исходного выражения, и в них сохраняется уже известный нам порядок выполнения действий. Рассмотрим решения примеров для большей ясности.

Выполните указанные действия 5+(7−2·3)·(6−4):2.

Выражение содержит скобки, поэтому сначала выполним действия в выражениях, заключенных в эти скобки. Начнем с выражения 7−2·3. В нем нужно сначала выполнить умножение, и только потом вычитание, имеем 7−2·3=7−6=1. Переходим ко второму выражению в скобках 6−4. Здесь лишь одно действие – вычитание, выполняем его 6−4=2.

Подставляем полученные значения в исходное выражение: 5+(7−2·3)·(6−4):2=5+1·2:2. В полученном выражении сначала выполняем слева направо умножение и деление, затем – вычитание, получаем 5+1·2:2=5+2:2=5+1=6. На этом все действия выполнены, мы придерживались такого порядка их выполнения: 5+(7−2·3)·(6−4):2.

Запишем краткое решение: 5+(7−2·3)·(6−4):2=5+1·2:2=5+1=6.

Бывает, что выражение содержит скобки в скобках. Этого бояться не стоит, нужно лишь последовательно применять озвученное правило выполнения действий в выражениях со скобками. Покажем решение примера.

Выполните действия в выражении 4+(3+1+4·(2+3)).

Это выражение со скобками, это означает, что выполнение действий нужно начинать с выражения в скобках, то есть, с 3+1+4·(2+3). Это выражение также содержит скобки, поэтому нужно сначала выполнить действия в них. Сделаем это: 2+3=5.

Подставив найденное значение, получаем 3+1+4·5. В этом выражении сначала выполняем умножение, затем – сложение, имеем 3+1+4·5=3+1+20=24.

Исходное значение, после подстановки этого значения, принимает вид 4+24, и остается лишь закончить выполнение действий: 4+24=28.

Вообще, когда в выражении присутствуют скобки в скобках, то часто бывает удобно выполнение действий начинать с внутренних скобок и продвигаться к внешним.

Например, пусть нам нужно выполнить действия в выражении (4+(4+(4−6:2))−1)−1.

Сначала выполняем действия во внутренних скобках, так как 4−6:2=4−3=1, то после этого исходное выражение примет вид (4+(4+1)−1)−1.

Опять выполняем действие во внутренних скобках, так как 4+1=5, то приходим к следующему выражению (4+5−1)−1. Опять выполняем действия в скобках: 4+5−1=8, при этом приходим к разности 8−1, которая равна 7.

К началу страницы

Если в выражение входят степени, корни, логарифмы, синус, косинус, тангенс и котангенс, а также другие функции, то их значения вычисляются до выполнения остальных действий, при этом также учитываются правила из предыдущих пунктов, задающие порядок выполнения действий. Иными словами, перечисленные вещи, грубо говоря, можно считать заключенными в скобки, а мы знаем, что сначала выполняются действия в скобках.

Рассмотрим решения примеров.

Выполните действия в выражении (3+1)·2+62:3−7.

В этом выражении содержится степень 62, ее значение нужно вычислить до выполнения остальных действий. Итак, выполняем возведение в степень: 62=36. Подставляем это значение в исходное выражение, оно примет вид (3+1)·2+36:3−7.

Дальше все понятно: выполняем действия в скобках, после чего остается выражение без скобок, в котором по порядку слева направо сначала выполняем умножение и деление, а затем – сложение и вычитание. Имеем (3+1)·2+36:3−7=4·2+36:3−7=8+12−7=13.

Другие, в том числе и более сложные примеры выполнения действий в выражениях с корнями, степенями и т.п., Вы можете посмотреть в статье вычисление значений выражений.

  • Математика: учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. – 21-е изд., стер. – М.: Мнемозина, 2007. – 280 с.: ил. ISBN 5-346-00699-0.

Некогда разбираться?

Закажите решение

К началу страницы

Источник: http://www.cleverstudents.ru/expressions/order_of_operations.html

Порядок выполнения действий в выражениях без скобок и со скобками. урок. Математика 3 Класс

Последовательность действий

В жизни мы постоянно выполняем какие-либо действия: гуляем, учимся, читаем, пишем, считаем, улыбаемся, ссоримся и миримся. Эти действия мы выполняем в разном порядке. Иногда их можно поменять местами, а иногда нет. Например, собираясь утром в школу, можно сначала сделать зарядку, затем заправить постель, а можно наоборот. Но нельзя сначала уйти в школу, а потом надеть одежду.

А в математике обязательно ли выполнять арифметические действия в определенном порядке?

Давайте проверим

Сравним выражения:
8-3+4 и 8-3+4

Видим, что оба выражения совершенно одинаковы.

Выполним действия в одном выражения слева направо, а в другом справа налево. Числами можно проставить порядок выполнения действий (рис. 1).

Рис. 1. Порядок действий

В первом выражении мы сначала выполним действие вычитания, а затем к результату прибавим число 4.

Запишем.

8-3+4=5+4=9

Во втором выражении сначала найдем значение суммы, а потом из 8 вычтем полученный результат 7.

8-3+4=8-7=1

Видим, что значения выражений получаются разные.

Сделаем вывод: порядок выполнения арифметических действий менять нельзя.

Узнаем правило выполнения арифметических действий в выражениях без скобок.

Если в выражение без скобок входят только сложение и вычитание или только умножение и деление, то действия выполняют в том порядке, в каком они написаны.

Потренируемся.

Рассмотрим выражение

38-10+6

В этом выражении имеются только действия сложения и вычитания. Эти действия называют действиями первой ступени.

Выполняем действия слева направо по порядку (рис. 2).

Рис. 2. Порядок действий

Рассмотрим второе выражение

24:3*2

В этом выражении имеются только действия умножения и деления – это действия второй ступени.

Выполняем действия слева направо по порядку (рис. 3).

Рис. 3. Порядок действий

В каком порядке выполняются арифметические действия, если в выражении имеются не только действия сложения и вычитания, но и умножения и деления?

Если в выражение без скобок входят не только действия сложения и вычитания, но и умножения и деления, или оба этих действия, то сначала выполняют по порядку (слева направо) умножение и деление, а затем сложение и вычитание.

Рассмотрим выражение.

18:2-2*3+12:3

Рассуждаем так. В этом выражении имеются действия сложения и вычитания, умножения и деления. Действуем по правилу. Сначала выполняем по порядку (слева направо) умножение и деление, а затем сложение и вычитание. Расставим порядок действий.

    1   4  2  5    3

18:2-2*3+12:3

Вычислим значение выражения.

    1   4  2  5    3

18:2-2*3+12:3=9-6+4=3+4=7

В каком порядке выполняются арифметические действия, если в выражении имеются скобки?

Если в выражении имеются скобки, то сначала вычисляют значение выражений в скобках.

Рассмотрим выражение.

30 + 6 * (13 – 9)

Мы видим, что в этом выражении имеется действие в скобках, значит, это действие выполним первым, затем по порядку умножение и сложение. Расставим порядок действий.

     3   2      1

30 + 6 * (13 – 9)

Вычислим значение выражения.

3    2   1

30+6*(13-9)=30+6*4=30+24=54

Как нужно рассуждать, чтобы правильно установить порядок арифметических действий в числовом выражении?

Прежде чем приступить к вычислениям, надо рассмотреть выражение (выяснить, есть ли в нём скобки, какие действия в нём имеются) и только после этого выполнять действия в следующем порядке:

1. действия, записанные в скобках;

2. умножение и деление;

3. сложение и вычитание.

Схема поможет запомнить это несложное правило (рис. 4).

Рис. 4. Порядок действий

Потренируемся.

Рассмотрим выражения, установим порядок действий и выполним вычисления.

43 – (20 – 7) +15

32 + 9 * (19 – 16)

2 * 9 – 18:3

Будем действовать по правилу. В выражении 43 – (20 – 7) +15 имеются действия в скобках, а также действия сложения и вычитания. Установим порядок действий. Первым действием выполним действие в скобках, а затем по порядку слева направо вычитание и сложение.

43 – (20 – 7) +15 =43 – 13 +15 = 30 + 15 = 45

В выражении 32 + 9 * (19 – 16) имеются действия в скобках, а также действия умножения и сложения. По правилу первым выполним действие в скобках, затем умножение (число 9 умножаем на результат, полученный при вычитании) и сложение.

32 + 9 * (19 – 16) =32 + 9 * 3 = 32 + 27 = 59

В выражении 2*9-18:3 отсутствуют скобки, зато имеются действия умножения, деления и вычитания. Действуем по правилу. Сначала выполним слева направо умножение и деление, а затем от результата, полученного при умножении, вычтем результат, полученный при делении. То есть первое действие – умножение, второе – деление, третье – вычитание.

2*9-18:3=18-6=12

Узнаем, правильно ли определен порядок действий в следующих выражениях.

     4    3    1   2

37 + 9 – 6 : 2 * 3 =

    3       1     2

18 : (11 – 5) + 47=

   1  3       2

7 * 3 – (16 + 4)=

Рассуждаем так.

     3     4   1   2

37 + 9 – 6 : 2 * 3 =

В этом выражении скобки отсутствуют, значит, сначала выполняем слева направо умножение или деление, затем сложение или вычитание. В данном выражении первое действие – деление, второе – умножение. Третье действие должно быть сложение, четвертое – вычитание. Вывод: порядок действий определен верно.

Найдем значение данного выражения.

     3 4  1  2

37+9-6:2*3 =37+9-3*3=37+9-9=46-9=37

Продолжаем рассуждать.

    3    1    2

18:(11-5)+47=

Во втором выражении имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие – в скобках, второе – деление, третье – сложение. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

    2    1    3

18:(11-5)+47=18:6+47=3+47=50

Рассуждаем далее.

  1  3     2

7*3-(16+4)=

В этом выражении также имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие – в скобках, второе – умножение, третье – вычитание. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

   2  3   1

7*3-(16+4)=7*3-20=21-20=1

Выполним задание.

Расставим порядок действий в выражении, используя изученное правило (рис. 5).

Рис. 5. Порядок действий

Мы не видим числовых значений, поэтому не сможем найти значение выражений, однако потренируемся применять изученное правило.

Действуем по алгоритму.

В первом выражении имеются скобки, значит, первое действие в скобках. Затем слева направо умножение и деление, потом слева направо вычитание и сложение.

Во втором выражении также имеются скобки, значит, первое действие выполняем в скобках. После этого слева направо умножение и деление, после этого – вычитание.

Проверим себя (рис. 6).

Рис. 6. Порядок действий

Сегодня на уроке мы познакомились с правилом порядка выполнения действий в выражениях без скобок и со скобками.

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. – М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. – М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. – М.: Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. – М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. – М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. – М.: Просвещение, 2012.
  7. В.Н. Рудницкая. Тесты. – М.: «Экзамен», 2012.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

1. Определи порядок действий в данных выражениях. Найди значение выражений.

68+2-50+43

(36-18):(72:8)

35:5+6*2

2. Определи, в каком выражении такой порядок выполнения действий:

1. умножение; 2. деление;. 3. сложение; 4. вычитание; 5. сложение. Найди значение данного выражения.

25+30:6-3*5+45

15+6*5-48:6-10

20+8*5-45:9+12

3. Составь три выражения, в которых такой порядок выполнения действий:

1. умножение; 2. сложение; 3. вычитание

1. сложение; 2. вычитание; 3. сложение

1. умножение; 2. деление; 3. сложение

Найди значение этих выражений.

Источник: https://interneturok.ru/lesson/matematika/3-klass/tema-umnozhenie-i-delenie/poryadok-vypolneniya-deystviy-v-vyrazheniyah-bez-skobok-i-so-skobkami-2

СтражЗакона
Добавить комментарий