Правило частот бора правила отбора

Атом Бора – материалы для подготовки к ЕГЭ по Физике

Правило частот бора правила отбора

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев.

Темы кодификатора ЕГЭ: постулаты Бора.

Планетарная модель атома, успешно истолковав результаты опытов по рассеянию -частиц, в свою очередь столкнулась с очень серьёзными трудностями.

Как мы знаем, любой заряд, движущийся с ускорением, излучает электромагнитные волны. Это – неоспоримый факт классической электродинамики Максвелла, подтверждаемый многочисленными наблюдениями.

Нам также хорошо известно, что электромагнитные волны несут энергию. Стало быть, ускоренно движущийся заряд, излучая, теряет энергию, которая этим излучением уносится.

А теперь давайте возьмём произвольный электрон в планетарной модели. Он двигается вокруг ядра по замкнутой орбите, так что направление его скорости постоянно меняется.

Следовательно, электрон всё время имеет некоторое ускорение (например, при равномерном движении по окружности это будет центростремительное ускорение), и поэтому должен непрерывно излучать электромагнитные волны.

Расходуя свою энергию на излучение, электрон будет постепенно приближаться к ядру; в конце концов, исчерпав запас своей энергии полностью, электрон упадёт на ядро.

Если исходить из того, что механика Ньютона и электродинамика Максвелла работают внутри атома, и провести соответствующие вычисления, то получается весьма озадачивающий результат: расход энергии электрона на излучение (с последующим падением электрона на ядро) потребует совсем малого времени – порядка секунды. За это время атом должен полностью “коллапсировать” и прекратить своё существование.

Таким образом, классическая физика предрекает неустойчивость атомов, устроенных согласно планетарной модели. Этот вывод находится в глубоком противоречии с опытом: ведь на самом деле ничего такого не наблюдается. Предметы нашего мира вполне устойчивы и не коллапсируют на глазах! Атом может сколь угодно долго пребывать в невозбуждённом состоянии, не излучая при этом электромагнитные волны.

Постулаты Бора

Оставалось признать, что внутри атомов перестают действовать известные законы классической физики. Микромир подчиняется совсем другим законам.

Первый прорыв в познании законов микромира принадлежит великому датскому физику Нильсу Бору. Он предложил три постулата, резко расходящиеся с механикой и электродинамикой, но тем не менее позволяющих правильно описать простейший из атомов – атом водорода.

Классическая физика хорошо описывает непрерывные процессы – движение материальной точки, изменение состояния идеального газа, распространение электромагнитных волн. . .

Энергия объекта, подчиняющегося механике или электродинамике, в принципе может принимать любые значения. Однако линейчатые спектры указывают на дискретность процессов, происходящих внутри атомов.

Эта дискретность должна фигурировать в законах новой теории.

Первый постулат Бора. Всякий атом (и вообще, всякая атомная система) может находиться не во всех состояниях с любым, наперёд заданным значением энергии. Возможен лишь дискретный набор избранных состояний, называемых стационарными, в которых энергия атома принимает значения Находясь в стационарном состоянии, атом не излучает электромагнитные волны.

Как видим, первый постулат Бора вопиющим образом противоречит классической физике: налагается запрет на любые значения энергии, кроме избранного прерывистого набора, и признаётся, что электроны, вроде бы движущиеся ускоренно, на самом деле не излучают.

Выглядит фантастически, не правда ли? Однако в том же 1913 году, когда Бор предложил свои постулаты, существование стационарных состояний было подтверждено экспериментально – в специально поставленном опыте немецких физиков Франка и Герца. Таким образом, стационарные состояния – это не выдумка, а объективная реальность.

Значения разрешённого набора называются уровнями энергии атома. Что происходит при переходе с одного уровня энергии на другой?

Второй постулат Бора. Если атом переходит из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией , то разность этих энергий может высвободиться в виде излучения. В таком случае излучается фотон с энергией

. (1)

Эта же формула работает и при поглощении света: в результате столкновения с фотоном атом переходит из состояния в состояние с большей энергией , а фотон при этом исчезает.

Для примера на рис. 1 показано излучение фотона при переходе атома с энергетического уровня на уровень . Переход заключается в том, что электрон “соскакивает” с одной орбиты на другую, расположенную ближе к ядру.

Рис. 1. Излучение фотона атомом

Формула (1) даёт качественное представление о том, почему атомные спектры испускания и поглощения являются линейчатыми.

В самом деле, атом может излучать волны лишь тех частот, которые соответствуют разностям значений энергии разрешённого дискретного набора ; соответственно, набор этих частот также получается дискретным. Вот почему спектр излучения атомов состоит из отдельно расположенных резких ярких линий.

Вместе с тем, атом может поглотить не любой фотон, а только тот, энергия которого в точности равна разности каких-то двух разрешённых значений энергии и .

Переходя в состояние с более высокой энергией , атомы поглощают ровно те самые фотоны, которые способны излучить при обратном переходе в исходное состояние .

Попросту говоря, атомы забирают из непрерывного спектра те линии, которые сами же и излучают; вот почему тёмные линии спектра поглощения холодного атомарного газа находятся как раз в тех местах, где расположены яркие линии спектра испускания этого же газа в нагретом состоянии.

Качественного объяснения характера атомных спектров, однако, недостаточно. Хотелось бы иметь теорию, позволяющую вычислить частоты наблюдаемых спектров. Бору удалось это сделать в самом простом случае – для атома водорода.

Атом водорода

Атом водорода состоит из ядра с зарядом , которое называется протоном, и одного электрона с зарядом (через обозначена абсолютная величина заряда электрона). При построении своей теории атома водорода Бор сделал три дополнительных предположения.

1. Прежде всего, мы ограничиваемся рассмотрением только круговых орбит электрона. Таким образом, электрон движется вокруг протона по окружности радиуса с постоянной по модулю скоростью (рис. 2).

Рис. 2. Модель атома водорода

2. Величина , равная произведению импульса электрона на радиус орбиты , называется моментом импульса электрона. В каких единицах измеряется момент импульса?

Смотрим:

=кг*м/с*м=(кг*м/)*м*с=Н*м*с=Дж*с.

Это в точности размерность постоянной Планка! Именно здесь Бор увидел появление дискретности, необходимой для квантового описания атома водорода.

Правило квантования (третий постулат Бора). Момент импульса электрона может принимать лишь дискретный набор значений, кратных “перечёркнутой” постоянной Планка:

, (2)

3. Выше мы говорили, что классическая физика перестаёт работать внутри атома. Так оно в действительности и есть, но вопреки этому мы предполагаем, что электрон притягивается к протону с силой, вычисляемой по закону Кулона, а движение электрона подчиняется второму закону Ньютона:

. (3)

Эти три предположения позволяют довольно просто получить формулы для уровней энергии атома водорода. Переписываем соотношение (3) в виде:

. (4)

Из правила квантования (2) выражаем :

,

и подставляем это в (4):

.

Отсюда получаем формулу для допустимых радиусов орбит электрона:

(5)

Теперь перейдём к нахождению энергии электрона. Потенциальная энергия кулоновского взаимодействия электрона с ядром равна:

(Она отрицательна, так как отсчитывается от бесконечно удалённой точки, в которой достигает максимального значения.)

Полная энергия электрона равна сумме его кинетической и потенциальной энергий:

.

Вместо подставим правую часть выражения (4):

. (6)

Полная энергия, как видим, отрицательна. Если на радиус орбиты никаких ограничений не накладывается, как это имеет место в классической физике, то энергия может принимать любые по модулю значения. Но согласно (5) существует лишь дискретный набор возможных значений радиуса; подставляя их в (6), получаем соответствующий набор допустимых значений энергии атома водорода:

. (7)

Основное состояние атома водорода – это состояние с наименьшей энергией . В основном состоянии атом может находиться неограниченно долго. Вычисление даёт:

Дж эВ:

Мы видим, что если атом находится в основном состоянии, то для выбивания электрона нужно сообщить атому энергию, равную как минимум 13,6 эВ. Эта величина носит название энергии ионизации атома водорода.

По формуле (5) легко вычислить радиус орбиты основного состояния:

см.

То есть, диаметр атома оказывается равным как раз см – величине, известной из опыта. Таким образом, теория Бора впервые смогла объяснить размер атома!

Кроме того, в рамках теории Бора удаётся получить формулы для вычисления частот (или длин волн) спектра атома водорода. Так, согласно второму постулату Бора и формуле (7) имеем:

. (8)

На практике чаще имеют дело с длинами волн. Учитывая, что , формулу (8) можно переписать так:

. (9)

Константа м называется постоянной Ридберга. Теория Бора даёт значение этой постоянной, очень хорошо согласующееся с экспериментом.

Длины волн спектра атома водорода образуют серии, характеризующиеся фиксированным значением в формуле (9). Все длины волн данной серии излучаются при переходах на уровень с вышележащих энергетических уровней .

Переходы в основное состояние:

образуют серию Лаймана. Длины волн этой серии описываются формулой (9) при :

.

Линии серии Лаймана лежат в ультрафиолетовом диапазоне.

Переходы на второй уровень:

образуют серию Бальмера. Длины волн этой серии подчиняются формуле (9) при :

.

Первые четыре линии серии Бальмера лежат в видимом диапазоне (рис. 3), остальные – в ультрафиолетовом.

Рис. 3. Видимый спектр атома водорода (серия Бальмера)

Переходы на третий уровень:

образуют серию Пашена.Длины волн этой серии описываются формулой (9) при :

.

Все линии серии Пашена лежат в инфракрасном диапазоне.

Имеются ещё три “именованных” серии: это серия Брэккета (переходы на уровень), серия Пфунда (переходы на уровень ) и серия Хэмпфри (переходы на уровень ). Все линии этих серий лежат в далёкой инфракрасной области.

Достоинства и недостатки теории Бора

О достоинствах модели атома водорода, предложенной Бором, мы так или иначе уже сказали. Резюмируем их.

-Теория Бора продемонстрировала, что для описания атомных объектов принципиально недостаточно представлений классической физики. В микромире работают другие, совершенно новые законы.

Для микромира характерно квантование – дискретность изменения величин, описывающих состояние объекта.

В качестве меры квантования, как показала теория Бора, может выступать постоянная Планка , которая является универсальной константой и играет фундаментальную роль во всей физике микромира (а не только в явлениях излучения и поглощения света).

-Теория Бора впервые и совершенно точно указала на факт наличия стационарных энергетических состояний атома, образующих дискретный набор. Этот факт оказался общим свойством объектов микромира.

-В рамках модели Бора удалось получить формулы для вычисления частот спектра атома водорода и объяснить размер атома. Классическая физика была не в состоянии решить эти проблемы.

Однако теория Бора, разумеется, не могла претендовать на роль общей теории, описывающей микромир. Модель Бора обладала рядом существенных недостатков.

-Теория Бора непоследовательна. С одной стороны, она отвергает описание атома на основе классической физики, так как постулирует наличие стационарных состояний и правила квантования, непонятных с точки зрения механики и электродинамики. С другой стороны, классические законы – второй закон Ньютона и закон Кулона – используются для записи уравнения движения электрона по круговой орбите.

-Теория Бора не смогла дать адекватное описание самого простого после водорода атома гелия. Подавно не могло быть и речи о распространении теории Бора на более сложные атомы.

-Даже в самом атоме водорода теория Бора смогла описать не всё. Например, дав выражения для частот спектральных линий, модель Бора не объясняла различие в их интенсивностях. Кроме того, неясен оставался механизм образования молекулы водорода из двух атомов.

Несмотря на свои недостатки, теория Бора стала важнейшим этапом развития физики микромира. Полуклассическая-полуквантовая модель Бора послужила промежуточным звеном между классической физикой и последовательной квантовой механикой , построенной десятилетием позже – в 1920-х годах.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/atom-bora/

Квантовые постулаты Бора

Правило частот бора правила отбора

Квантовые постулаты Бора – это два основных допущения, введённые Н.Бором для объяснения устойчивости атома и спектральных закономерностей (в рамках модели атома Резерфорда).

Планетарная модель атома Резерфорда позволила объяснить результаты опытов по рассеянию α-частиц вещества, но она не способна объяснить факт существования атома и его устойчивость.

В соответствии с планетарной моделью электроны атома должны двигаться вокруг неподвижного ядра. Двигаясь вокруг ядра с центростремительным ускорением под действием силы притяжения к ядру, электрон должен, как и всякий ускоренно движущийся электрический заряд, излучать электромагнитные волны с частотой, равной частоте обращения электрона вокруг ядра.

Энергия электрона в атоме должна при этом непрерывно уменьшаться за счёт излучения. Сам электрон должен с каждым оборотом приближаться по спирали к ядру и упасть на него под действием электрической силы притяжения.

При этом атом потеряет всю электронную оболочку, а также присущие ему физические и химические свойства.

Кроме того, атом должен потерять спектр излучения частоты, то есть атом должен давать излучение с непрерывным (сплошным) спектром частот.

Эти результаты, полученные с помощью классической механики и электродинамики, находятся в резком противоречии с опытом, который показывает, что

  1. Атомы являются весьма устойчивыми системами и в невозбуждённом состоянии могут существовать неограниченно долго, не излучая при этом электромагнитные волны
  2. Спектр излучения атома является линейчатым (дискретным) – образованным из отдельных линий (от латинского discretus – прерывистый, состоящий из отдельных значений)

Всё это свидетельствует о том, что законы классический физики применить к электронам в атомах нельзя, поэтому необходимы новые представления о механизме излучения и поглощения атомами электромагнитных волн.

В основе современной теории атома лежитквантовая механика – теория, устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, которые характеризуют частицы и системы, с физическими величинами, измеряемыми опытным путём.

В 1913 году датский физик Нильс Бор (1885 – 1962) ввёл идеи квантовой теории в ядерную модель атома Резерфорда и разработал теорию атома водорода, которая подтвердилась всеми известными тогда опытами.

Бор сформулировал в виде постулатов основные положения новой теории, которые налагали лишь некоторые ограничения на допускаемые классической физикой движения. Однако последовательной теории атома Бор не дал.

Впоследствии теория Бора была включена как частный случай в квантовую механику. В основе теории Бора лежат два постулата.

Первый постулат Бора: постулат стационарных состояний

Атомная система может находиться только в особых стационарных, или квантовых, состояниях, каждому из которых соответствует определённая энергия En. В стационарном состоянии атом не излучает.

Второй постулат Бора: правило частотe

Излучение света происходит при переходе атома из стационарного состояния с большей энергией Ek в стационарное состояние с меньшей энергией En. Энергия излученного фотона равна разности энергий стационарных состояний:

hn = Ek — En

Частота излучения равна:

n = (Ek — En) / h = (Ek / h) — (En / h)

Или, длина волны излучения λ равна:

1 / λkn = (1 / hc) (Ek — En)

Где h – постоянная Планка, с – скорость света в вакууме.

Если Ek > En, то происходит излучение фотона, если Ek < En, то происходит поглощение фотона, при котором атом переходит из стационарного состояния с меньшей энергией в стационарное состояние с большей энергией.

Таким образом, для каждого атома имеется ряд строго определённых дискретных значений энергии, которыми он может обладать. Физические величины, например энергия и импульс, которые могут принимать лишь дискретные (квантовые) значения, носят название квантованные физические величины (квантование физических величин).

При этом энергетические уровни атома – это возможные значения энергии атома.

Правило квантования орбит позволяет определить радиусы стационарных орбит:

mvnrn = nh’

где n = 1, 2, 3…, m – масса электрона, rn – радиус n-ой орбиты, vn – скорость электрона на этой орбите.

Число n – положительное число, которое называется главное квантовое число.

Величина (mvn)rn – момент импульса электрона.

h’ – это величина, которая равна:

h’ = h/2π = 1,05445887•10-34 Дж•с

где h – постоянная Планка.

Главное квантовое число указывает номер орбиты, по которой может обращаться электрон.

Свои постулаты Н.Бор применил для построения теории простейшей атомной системы – атома водорода, состоящего из ядра – протона, и одного электрона.

Эта теория также применима для водородоподобных ионов, то есть атомов с зарядом ядра Ze и потерявших все электроны, кроме одного (например, Li2+, Be3+ и т.п.).

В предположении, что электрон движется по круговой орбите, постулаты Бора позволяют найти радиусы rn стационарных, возможных орбит электрона. На электрон действует кулоновская сила:

Fk = (1 / 4πε0) (ε2 / rn2)

Где е – модуль заряда электрона, равный заряду ядра, ε0 = 8,85418782 * 10-12 Ф/м – электрическая постоянная в единицах СИ.

Кулоновская сила сообщает электрону на орбите центростремительное ускорение:

aцс = (vn2) / rn

Согласно второму закону Ньютона:

Fk = maцс

Поэтому

(mvn2) / rn = e2 / (4πε0rn2)

Или

mvn2rn = e2 / (4πε0)

Используя правило квантования орбит mvnrn = nh’, можно получить выражения для возможных радиусов орбит. Исключая скорость vn из предыдущего выражения, получим:

rn = 4πε0n2h’ / me2 (так как h’ = h / 2π)

Таким образом, радиусы орбит электрона в атоме водорода прямо пропорциональны квадратам главного квантового числа n.

Наименьший радиус орбит при n = 1, то есть радиус первой орбиты в атоме водорода равен:

r1 = 4πε0h’ / me2 = 0,528 * 10-10 м = 0,528 Å

Радиус первой орбиты в атоме водорода носит название первый Боровский радиус и служит единицей длины в атомной физике.

Полная энергия Е электрона в атоме водорода, согласно механике Ньютона, равна сумме кинетической энергии Еk и потенциальной энергии П взаимодействия электрона с ядром:

E = Еk — П = (mvn2 / 2) — (e2 / 4πε0rn)

Потенциальная энергия электрона в атоме отрицательна:

П = — (e2 / 4πε0rn)

Так как нулевой уровень отсчёта берётся на бесконечности (рис. 1.3), а по мере приближения электрона к ядру его потенциальная энергия уменьшается. Взаимодействующие частицы – ядро и электрон – имеют заряды противоположных знаков.

Рис. 1.3. Потенциальная энергия электрона в атоме.

Подставляя значение скорости

vn2 = — e2 / 4πε0mrn

в выражение полной энергии, получим:

E = (m / 2) (e2 / 4πε0mrn) — (e2 / 4πε0rn)

Подставляя в эту формулу выражение для радиусов орбит, получим энергетические уровни электрона в атоме водорода (значения энергий стационарных состояний атома):

En = -(1 /(4πε0)2) me4 / 2h’2n2 = — (me4 / 8h2ε02) * (1 / n2), n = 1,2,3…

Энергия Еn электрона в атоме водорода зависит от главного квантового числа n, которое определяет энергетические уровни электрона в атоме водорода.

Основное энергетическое состояние атома (нормальное состояние атома) – это энергетический уровень при n = 1.

Значение энергии, соответствующее первому (низшему) энергетическому уровню в атоме водорода равно:

E1 = -(1 /(4πε0)2) me4 / 2h’2λ = -2,485 * 10-19 Дж = -13,53 эВ

В этом состоянии атом может находиться сколько угодно долго. Для того чтобы ионизировать атом водорода, ему нужно сообщить энергию 13,53 эВ, которая называется энергия ионизации.

Энергетические уровни при n > 1 – это возбуждённые энергетические состояния (возбуждённые состояния атома). Возбуждённое состояние атома является менее устойчивым, чем основное состояние. Время жизни атома в этом состоянии имеет порядок 10-8 секунд. За это время электрон успевает совершить около ста миллионов оборотов вокруг ядра.

При переходе электрона с удалённой от ядра стационарной k-орбиты на ближайшую n-ую орбиту атом излучает фотон, энергия которогоhvnk согласно второму постулату Бора определяется:

hn = Ek — En = -(1 / (4πε0)2) * (me4 / 2h’2) * [(1 / n2) — (1 / k2)] = (me4 / 8h2ε02) * [(1 / n2) — (1 / k2)]

Частота излучения атома водорода:

n = (1 / (4πε0)2) * (me4 / h’3) * [(1 / n2) — (1 / k2)] = R[(1 / n2) — (1 / k2)]

Где

R = (me4 / (4πε0)2) * 4πh’3) = (me4 / 8h3ε02) = 3,288 * 1015 c-1— постоянная Ридберга

Постоянная Ридберга определяется через постоянную Планка, массу и заряд электрона.

Длина волны излучения определяется соотношением:

1 / λnk = vnk / c = (me4 / 8ε02h3c) * [(1 / n2) — (1 / k2)] = Rc[(1 / n2) — (1 / k2)]

Где

Rc = R / c = 1,0974 * 107 м-1 — также постоянная Ридберга

с = 3*108 м/с – скорость света в вакууме.

Теоретическое значение R совпадает с экспериментальным значением, полученным из спектроскопических измерений.

Энергия обычно измеряется в электронвольтах (эВ). Электронвольт– это значение энергии, которую приобретает электрон, пройдя ускоряющую разность потенциалов в 1 В:

1 эВ = 1,6 * 10-19 Кл * 1В = 1,6 * 10-19 Дж

Источник: http://av-mag.ru/physics/index.php/atoms/stroenie/quantum-postulates/

Постулаты Бора

Правило частот бора правила отбора

В начале $XX$ века Бор предложил первую неклассическую теорию строения атома. В основание данной теории были положены $3$ результата, которые были получены к тому времени в физике:

  1. Экспериментальны законы, описывающие линейчатый спектр атома водорода (формула Бальмера – Ридберга).

  2. Планетарная модель Резерфорда, которая не истолковывалась в рамках классической физики.

  3. Квантовый характер испускания и поглощения света атомами.

С тем, чтобы решить поставленную задачу Бор, используя классический подход к описанию того как ведет себя электрон в атоме, предложил постулаты. Которые в настоящее время носят его имя (постулаты Бора).

Смысл этих постулатов классическая физика объяснить не может, кроме того они существуют в противоречии с классическим описанием движения электрона в атоме.

Истинный смысл и значение постулатов были открыты в рамках квантовой механики.

Свою теорию Бор создавал для водорода и водородоподобных атомов (систем), которые состоят из ядра (его заряд $Zq_e$) и одного электрона, который перемещается вокруг ядра. Например, ион гелия (${He}+$), ион лития (${Li}{2+}$). Данные системы называют изоэлектронными водороду. Для атомов, подобных водороду, все сериальные формулы содержат, вместо постоянной Ридберга, ее произведение: $RZ2$.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Первый постулат Бора

Постулат стационарных состояний. Его смысл в следующем: Атом может находиться в стационарных состояниях, которые являются постоянными во времени, в том случае, если нет внешних воздействий. В таких состояниях атом не излучает электромагнитные волны.

Таким состояниям соответствуют стационарные орбиты движения электронов. При этом электроны движутся ускоренно, но электромагнитных волн не излучают.

В данном случае появляется противоречие с положениями классической физики, которая утверждает, что ускоренно движущийся заряд является источником излучения энергии.

Второй постулат Бора

Правило частот. Это правило говорит о том, что в случае перехода атома из одного стационарного состояния в другое, атом поглощает или испускает один квант энергии. Атом излучает, если переходит из состояния с большей энергией в состояние с меньшей энергией.

Данному процессу соответствует переход электрона с более удаленной от ядра орбиты на орбиту, которая расположена ближе к ядру. Поглощение атомом энергии происходит при переходе атома из состояния с меньшей энергией, в состояние с большей энергией.

Изменение энергии у атома проходит при излучении (поглощении) им электромагнитных волн, причем данное изменение пропорционально частоте волн:

Если $E_n >E_m$, фотон испускается. При $E_n

Первый и второй постулаты Бора дали возможность связать между собой $3$ результата, которые были получены к тому времени в физике (см. начало статьи). И эти постулаты были подтверждены эмпирически.

Третий постулат Бора

Правило квантования. Он утверждает, что электрон, если атом находится в стационарном состоянии, движется по круговым орбитам, имеет дискретные квантовые значения момента импульса:

$m_e$ — масса электрона, $v$ — скорость электрона, $r$ — радиус круговой орбиты электрона, $\hbar =1,05\cdot {10}{-34}Дж\cdot с$. Правило квантования орбит получило толкование в квантовой механике (на длине круговой орбиты).

Постулаты, которые предложил Бор, дали ему возможность, исходя из теории, рассчитать спектр водорода и ионов, которые имеют один электрон и вычислить постоянную Ридберга ($R$). Считая движение электрона, перемещением по круговой орбите, он получил для постоянной Ридберга следующую расчётную формулу для водорода:

Экспериментальное подтверждение постулатов Бора

Первые два постулата Бора получили эмпирическое подтверждение в опытах Дж. Франка и Г. Герца. Ученые исследовали прохождение пучка ускоренных электрическим полем электронов сквозь газы. Первоначально электроны пропускали сквозь пары ртути. При этом происходят соударения электронов с атомами ртути, которые делятся на два типа: упругие и неупругие соударения.

В результате первых, величины скорости и энергии не изменяются, изменяется только направление движения электронов. При неупругих соударениях электроны теряют энергию, передавая ее атома ртути. Электрон может иметь любую кинетическую энергию.

В случае непрерывного изменения энергии атома, при столкновении электрона с атомами передается любая порция энергии, которая находится в согласии с законом сохранения. Так как разница масс электрона и атома велика, то изменение кинетической энергии атома в столкновении мало, и его можно учитывать, используя классические формулы.

В случае дискретности состояний атомных систем, то внутренняя энергия атомов при столкновениях меняется дискретно, при этом изменения энергии равны разности энергий атома в стационарных состояниях. Значит, электрон в неупругом соударении, передает атому только определенную порцию энергии.

При измерении энергии, которую передает электрон атому в столкновении, делается вывод о разности энергий состояний атома. Все результаты опытов Франка и Герца привели ученых к заключению, что состояния атомных систем изменяются дискретно.

Пример 1

Задание: Каково главное квантовое число состояния, в которое переходит атом водорода, который находится в основном состоянии при поглощении фотона, имеющего энергию $12,12эВ$.

Решение:

Энергия электрона на первом Боровском уровне равна:

\[E_n=-\frac{Rh}{n2}\left(1.1\right),\]

где $n=1,R=3,29\cdot {10}{15}c{-1}.$ Вычисли ее:

\[E_1=-Rh=-3,29\cdot {10}{15}\cdot 6,63\cdot {10}{-34}=-21,81\cdot {10}{-19}\ \left(Дж\right)=-13,6\ \left(эВ\right).\]

При переходе электрона с первого уровня в возбужденное состояние, в соответствии со вторым постулатом Бора, имеем:

\[\triangle E=E_n-E_1\to E_n=\triangle E+E_1\to -\frac{Rh}{n2}=\triangle E+E_1\to \frac{E_1}{n2}=\triangle E+E_1\to n2=\frac{E_1}{\triangle E+E_1}\left(1.2\right).\] \[n=\sqrt{\frac{E_1}{nE+E_1}}\left(1.3\right).\]

Проведем вычисления:

\[n\sqrt{\frac{-13,6}{12,12-13,6}}=3.\]

Ответ: $n=3.$

Пример 2

Задание: В чем достижения и недостатки теории Бора?

Решение:

Теория Бора истолковала существования линейчатых спектров водородоподобных систем. Она дала объяснение физической природы характеристических рентгеновских лучей. Теория Бора сыграла существенную роль в развитии атомной спектроскопии. При использовании теории Бора был собран экспериментальный материал о спектрах атомов и молекул.

К недостаткам теории Бора относят ее внутреннюю противоречивость. Она соединяет классическую физику с квантовыми постулатами. Эта теория неприменима к атомам, которые имеют более одного электрона.

Развитие физики показало, что теория, созданная Бором, верно истолковывает одни факты и не способна объяснить другие. Эта теория является переходной при создании последовательной квантовой теории. Недостатки теории Бора проявились уже в применении к атому водорода.

Так, правильно определяя частоты линий спектра, эта теория не дает возможности найти их интенсивность. Теория не рассматривает вопросы поляризации и когерентности. С помощью разработок Бора не было возможности пояснить дублетный характер спектров щелочных металлов.

В данной теории не выяснялся вопрос о квантовании непериодических движений. Дифракция частиц, также осталась вне рамок теории.

Источник: https://spravochnick.ru/fizika/predmet_i_zadachi_atomnoy_fiziki/postulaty_bora/

Второй постулат Бора: правило частот

Излучение света происходит при переходе атома из стационарного состояния с большей энергией Ek в стационарное состояние с меньшей энергией En. Энергия излученного фотона равна разности энергий стационарных состояний:

hn = Ek – En

Частота излучения равна:

n = (Ek – En) / h = (Ek / h) – (En / h)

Или, длина волны излучения λ равна:

1 / λkn = (1 / hc) (Ek – En)

Где h – постоянная Планка, с – скорость света в вакууме.

Если Ek > En, то происходит излучение фотона,если Ek < En, то происходит поглощение фотона, при котором атом переходит из стационарного состояния с меньшей энергией в стационарное состояние с большей энергией.

Таким образом, для каждого атома имеется ряд строго определённых дискретных значений энергии, которыми он может обладать. Физические величины, например энергия и импульс, которые могут принимать лишь дискретные (квантовые) значения, носят название квантованные физические величины (квантование физических величин).

При этом энергетические уровни атома – этовозможные значения энергии атома.

Правило квантования орбит позволяет определить радиусы стационарных орбит:

mvnrn = nh'

где n = 1, 2, 3…, m – масса электрона, rn – радиус n-ой орбиты,vn – скорость электрона на этой орбите.

Число n – положительное число, которое называется главное квантовое число.

Величина (mvn)rn – момент импульса электрона.

h' – это величина, которая равна:

h' = h/2π = 1,05445887•10-34 Дж•с

где h – постоянная Планка.

Главное квантовое число указывает номер орбиты, по которой может обращаться электрон.

Свои постулаты Н.Бор применил для построения теории простейшей атомной системы – атома водорода, состоящего из ядра – протона, и одного электрона.

Эта теория также применима для водородоподобных ионов, то есть атомов с зарядом ядра Ze и потерявших все электроны, кроме одного (например, Li2+, Be3+ и т.п.).

В предположении, что электрон движется по круговой орбите, постулаты Бора позволяют найти радиусы rn стационарных, возможных орбит электрона. На электрон действует кулоновская сила:

Fk = (1 / 4πε0) (ε2 / rn2)

Где е – модуль заряда электрона, равный заряду ядра,ε0 = 8,85418782 * 10-12 Ф/м – электрическая постоянная в единицах СИ.

Кулоновская сила сообщает электрону на орбите центростремительное ускорение:

aцс = (vn2) / rn

Согласно второму закону Ньютона:

Fk = maцс

Поэтому

(mvn2) / rn = e2 / (4πε0rn2)

Или

mvn2rn = e2 / (4πε0)

Используя правило квантования орбит mvnrn = nh', можно получить выражения для возможных радиусов орбит. Исключая скорость vn из предыдущего выражения, получим:

rn = 4πε0n2h' / me2 (так как h' = h / 2π)

Таким образом, радиусы орбит электрона в атоме водорода прямо пропорциональны квадратам главного квантового числа n.

Наименьший радиус орбит при n = 1, то есть радиус первой орбиты в атоме водорода равен:

r1 = 4πε0h' / me2 = 0,528 * 10-10 м = 0,528 Å

Радиус первой орбиты в атоме водорода носит название первый Боровский радиус и служит единицей длины в атомной физике.

Полная энергия Е электрона в атоме водорода, согласно механике Ньютона, равна сумме кинетической энергии Еk и потенциальной энергии П взаимодействия электрона с ядром:

E = Еk – П = (mvn2 / 2) – (e2 / 4πε0rn)

Потенциальная энергия электрона в атоме отрицательна:

П = – (e2 / 4πε0rn)

Так как нулевой уровень отсчёта берётся на бесконечности (рис. 1.3), а по мере приближения электрона к ядру его потенциальная энергия уменьшается. Взаимодействующие частицы – ядро и электрон – имеют заряды противоположных знаков.

Рис. 1.3. Потенциальная энергия электрона в атоме.

Подставляя значение скорости

vn2 = – e2 / 4πε0mrn

в выражение полной энергии, получим:

E = (m / 2) (e2 / 4πε0mrn) – (e2 / 4πε0rn)

Подставляя в эту формулу выражение для радиусов орбит, получим энергетические уровни электрона в атоме водорода (значения энергий стационарных состояний атома):

En = -(1 /(4πε0)2) me4 / 2h'2n2 = – (me4 / 8h2ε02) * (1 / n2), n = 1,2,3…

Энергия Еn электрона в атоме водорода зависит от главного квантового числа n, которое определяет энергетические уровни электрона в атоме водорода.

Основное энергетическое состояние атома (нормальное состояние атома) – это энергетический уровень при n = 1.

Значение энергии, соответствующее первому (низшему) энергетическому уровню в атоме водорода равно:

E1 = -(1 /(4πε0)2) me4 / 2h'2λ = -2,485 * 10-19 Дж = -13,53 эВ

В этом состоянии атом может находиться сколько угодно долго. Для того чтобы ионизировать атом водорода, ему нужно сообщить энергию 13,53 эВ, которая называется энергия ионизации.

Энергетические уровни при n > 1 – это возбуждённые энергетические состояния (возбуждённые состояния атома). Возбуждённое состояние атома является менее устойчивым, чем основное состояние. Время жизни атома в этом состоянии имеет порядок 10-8 секунд. За это время электрон успевает совершить около ста миллионов оборотов вокруг ядра.

При переходе электрона с удалённой от ядра стационарной k-орбиты на ближайшую n-ую орбиту атом излучает фотон, энергия которого hvnk согласно второму постулату Бора определяется:

hn = Ek – En =-(1 / (4πε0)2) * (me4 / 2h'2) * [(1 / n2) – (1 / k2)] =(me4 / 8h2ε02) * [(1 / n2) – (1 / k2)]

Частота излучения атома водорода:

n = (1 / (4πε0)2) * (me4 / h'3) * [(1 / n2) – (1 / k2)] =R[(1 / n2) – (1 / k2)]

Где

R = (me4 / (4πε0)2) * 4πh'3) =(me4 / 8h3ε02) = 3,288 * 1015 c-1- постоянная Ридберга

Постоянная Ридберга определяется через постоянную Планка, массу и заряд электрона.

Длина волны излучения определяется соотношением:

1 / λnk = vnk / c = (me4 / 8ε02h3c) *[(1 / n2) – (1 / k2)] = Rc[(1 / n2) – (1 / k2)]

Где

Rc = R / c = 1,0974 * 107 м-1 – также постоянная Ридберга

с = 3*108 м/с – скорость света в вакууме.

Теоретическое значение R совпадает с экспериментальным значением,полученным из спектроскопических измерений.

Энергия обычно измеряется в электронвольтах (эВ). Электронвольт – это значение энергии, которую приобретает электрон, пройдя ускоряющую разность потенциалов в 1 В:

1 эВ = 1,6 * 10-19 Кл * 1В = 1,6 * 10-19 Дж

Источник: http://www.av-physics.narod.ru/atom/quantum-postulates.htm

СтражЗакона
Добавить комментарий